Home
My Products
Search
What's New

Motorcycle Fairings and Windshields

This page Copyright © 2003-2011, by Mark Lawrence.
Email me, mark@calsci.com, with suggestions, additions, broken links.

Football
Investing
Neural Networks
Physics

Home
Introduction
General«
Warranties&Insurance
New Bikes«
Break-In«
Hauling Motorcycles«
Shipping Motorcycles
Winter Storage«

Road Test Links

Discount Parts

Introduction to
Motorcycles

Types of Motorcycles
Motorcycle Safety
Buying a Motorcycle
Recomendations
Motorcycle Controls
Motorcycle Steering
Motorcycle Shifting
Motorcycle Brakes
Hitting Obstacles
Lane Positions
Cargo and Passengers
Parking Motorcycles
Basic Operation
Practice Exercises
Conclusion

Body
Seat Cushions
Custom Seats
Modify Your Seat«
Backrests
Headlight Covers
Tank Bras
Fender Accessories«
Cleaning Supplies
Plastic Repairs
Touch-up Paint

Chassis
Suspension
Check Rear Suspension«
Align Rear Suspension«
Adjust Rear Suspension«
Align Front Suspension«
Adjust Front Suspension«
Increase Fork Spring Rate«
Lowering Your Bike«
Improve Fork Damping«
Drive Chains«
Tires
Tire Accessories«
Wheels«

Controls
Instruments
Handlebars
Adjusting Controls
Heated Grips«
Controls«
Cruise Controls«
Brakes
Hydraulics«
Footpegs

Electrical
Power
Switches & Connectors
Battery
Horns
Driving Lights
Headlights
Tail Lights«
Reflectors
Turn Signals«
Radio
Intercoms
Speakers
Earphones
GPS
Radar Detectors
Radar & GPS Mounts

Engine and Tools
Metric Nuts & Bolts
Radiators
Tools
Lifts

Fairing
Windshields
Windshield Height«
Cleaning Windshields«
Repairing Windshields«
Modifying Windshields«
Fairing History

Lubricants
Grease
Shaft Drive Gears«
Shaft Drive Splines«
Drive Chains«
Engine Oil«
All About Oil
API Oil Standards
Oil Filters«
All About Filters
Filter Cross Ref
Filter Surgery
Air Filters

Luggage
Straps & Nets«
Tank Bags
Bag Liners
Cargo Sacks
Saddlebag Keys«
Soft Saddle Bags
Hard Saddle Bags
Aluminum Saddle Bags
TailPacks
Top Boxes
Refrigerators
Motorcycle Trailers

Riding
Riding Suits
Rain Suits
Summer Jackets
Off Road Protective
Cool Vests
Heated clothes
Street Boots
Dirt Boots
Riding Gloves
Custom Clothes
Foam Earplugs
Riding with kids
Helmets
Riding in extreme heat
Taking long trips
Small Gadgets
Cameras
Communication
Clothes
Packing
Camping out
Logistics
Packing Check List
State Riding Laws
Printable State Laws

FJR1300
Our Products
Specifications

Ninja 1000

R1200GS HP2

R1200GS
Mechanical Issues
Road Tests
General
Links
Crashbars
Luggage
Lights
Seat
Handlebars
Dash Shelf
Footpegs
Exhaust
Tires
Specifications

R1200RT
Road Tests
General
Links
Specifications

R1200ST
Road Tests
General
Links
Specifications

ST1300
Our Products
Mechanical Issues
Road Tests
General
Handlebars
Footpegs«
Suspension«
Tires«
Brakes
Exhaust
Engine«
Fuel Filters
Air Filters
Wiring Diagrams
Lights«
Radio
Windshields«
Electric Windshields«
Fairing Accessories
Fairing Pads
Dash Shelves
Hondaline TopBox
Information
Specifications

Ulysses
Our Products
Road Tests
General
Links
Windshields
Specifications

V-Strom
Our Products
Mechanical Issues
Road Tests
General
Gas Mileage
Windshields
Gearing«
Controls
Footpegs
Crashbars
SkidPlate
Centerstand
Suspension
Body
Brake Pads
Tires
Electric
Engine
Exhaust«
Suzuki Luggage«
Fairing Pads
Specifications
My DL650 Review

Superhawk
Mechanical Issues
Road Tests
General
Crashbars
SkidPlate
Centerstand
Stock tires
Brake Pads
Electric
Engine
Exhaust«
Windshields
Suzuki Luggage
Fairing Pads

Articles
Airbags are Evil
All About Gasoline
All About Oil
All About Filters
A Friend's Crash
My DL650 Review
Horsepower & Torque
Making Horsepower
Paul Mondor's Snow Tour
Pollution Myths
Resonant Air Boxes
Riding in extreme heat
Suspension
Fighting Traffic Tickets«

References
API Oil Standards
Batteries & Spark Plugs
Chains & Sprockets
Tires
Motorcyle Accidents
Filter Cross Ref
Filter Surgery
Metal Gauges
Wire Gauges
Unit Conversions
Drills & Screws
New Bike Check List
Storage Check List
Packing Check List
Printable State Laws

Weather
Links
Web Page Popularity
About This Site
Me

I recommend FireFox
Please help support this web site
•If you need a windshield, consider ours.
•Contribute to our site maintenance fund:
•Support our advertisers. Thanks, Mark

Windshields

Plastics

Windshields for motorcycles are made from either polycarbonate (Lexan) or acrylic (Plexiglas). Each type of plastic has advantages and disadvantages.

Polycarbonate is an extremely strong plastic. Polycarbonate is about as transparent as glass. Polycarbonate cuts and forms easily at both room temperature and at higher temperatures. For machining purposes, you can work with polycarbonate pretty much the same as you would aluminum. Polycarbonate has a major drawback for windshield use: polycarbonate picks up water from the air. The water eventually makes the polycarbonate cloudy. This water will form bubbles if you heat the polycarbonate to forming temperatures. So, before you can form polycarbonate, first you have to place it in a drying oven at about 200° for about 12 hours. Because of this, only companies that manufacture polycarbonate make windshields. Polycarbonate is sensitive to ammonia, so glass cleaners like Windex should not be used on polycarbonate. Polycarbonate windshields need a coating to protect them from chemicals and prevent them from absorbing water from the air. This optical coating is difficult to apply uniformly, resulting in optical distortion. It also scratches and cannot be repaired with plastic polish. By far the most popular polycarbonate for motorcycle windshields is GE Lexan Margard MR10, aka "quantum coated." GE polymers was recently bought by a Saudi Arabian firm, Sabic - see GEPlastics.com. We don't buy products from countries that fund terrorism.

Acrylic is only about 3% as impact resistant as polycarbonate. Normal acrylic shatters upon impact, and therefore is considered an unsafe material for windshields. Acrylic is very chemically resistant, and is more transparent than glass - glass absorbs about half again as much light as acrylic does. Acrylic forms easily at high temperatures, about 300°. However, machining acrylic at room temperature is difficult. It's not very easy to cut acrylic with a saw or drill holes in acrylic without shattering or weakening the material.

Polycarbonate is a DOT approved material for making windshields; normal acrylic is not. Some states require DOT approved windshields, and therefore in these states a normal acrylic windshield is actually illegal, however these laws are rarely enforced. Normal acrylic can be shattered by an impact from a rock moving at speeds as low as 15mph.

We use a special high cost acrylic called Impact Modified Acrylic. This form of acrylic is DOT approved for windshields. We use only DOT certified impact resistant plastics to make Calsci windshields. Our windshields will not shatter if hit by a rock. We test our windshields by shooting them with a .22 caliber rifle and verifying that the windshield maintains its basic integrity without shedding small pieces that could impact your face or eyes. No windshield can protect you against everything, but we do our best to make certain that our windshields protect you against the small rocks frequently thrown up by other vehicle's tires.

Optics

Even though Calsci windshields are designed so that you look over them, not through them, we use only optically correct shapes that will not distort your vision if you do look through the shield. If you look through one of our shields at a dividing line on the highway, you'll see essentially no bending of the straight line. You'll never get a headache from looking through one of our shields.

Design Goals

There's a very understandable desire for a very small attractive shield that will throw the air completely over your head. Can't be done. Laws of physics. Some people put little adjustable wings on their shields promising this; the wings can make a shield act 3cm-5cm taller than it is, but that's about it, and then the top of the shield has three parallel edges instead of just one in your visual field.

Stock shields are designed to look sexy on the showroom floor and sell bikes. Really, in almost all cases, the manufacturers are completely uninterested in the aerodynamic performance, they're interested in the marketing / sales performance. And their experience in wind tunnels is mostly on things like the CBR, so they're thinking punch a small hole in the air at 280kph, they're not thinking produce a calm quiet ride at 120kph.

I'm all about long distance touring comfort, riding 6 to 10 hours per day then being able to do it again tomorrow. I understand this means many think my shields look like barn doors, and I have essentially no customers under the age of about 34. On the other hand, guys over about 45 are completely uninterested in the small sexy shields: we mostly feel like we've already taken our life quota of abuse, and we certainly don't need to take more from our chosen hobby. If you're under 30, I'll talk to you in about 10-15 years. You'll feel very differently then.

Aerodynamics

Why don't we use wind tunnels? Wind tunnels are made to measure lift and drag, not noise and turbulence. You put a model on a pedestal attached to strain gauges and start up the wind. Lift is the pull upwards on the pedestal; drag is the push backwards. This is what wind tunnels have measured since they were invented by the Wright brothers. CBRs go into wind tunnels because at 180mph aerodynamic drag is everything. Those fancy looking smoke trails you see in many car ads? The wind tunnel is operating at about 1-2 mph. Any faster and the smoke pulls apart and you can't see a thing.

Nearly all of our windshields have vents. These vents are part of the aerodynamic design of the shield, to reduce turbulence and noise. They are not there to make a flow of air on the rider. When you're riding on the highway, any windshield is pushing air away from the rider. This leaves a low-pressure pocket between the windshield and the rider. Some riders feel this low-pressure area as a push on their shoulders, "back pressure." The air flowing past the windshield wants to drop into this low pressure area. If the outside air is allowed to spill into the area between the windshield and the rider, the result is turbulence, noise, and drafts. When outside air spills into the rider area, it almost always falls in a curved path, causing spinning vortices of air. These vortices are noisy and can cause the battering and hammering on your helmet reported by some riders. Our windshields and vents are designed to funnel air into the rider region to relieve this low pressure area and greatly reduce the tendency of outside air to spill in. The vents are designed so that the air coming through them is quickly dispersed, leaving almost no detectable air flow at the rider. Our goal is to produce almost completely still air on the rider with no back pressure.

Why don't we put louvers on our vents? Air sticks to any surface; immediately at the surface the air is not moving. As you move away from the surface the air speed picks up with distance. The curve of airspeed vs. distance from the surface is called a Poisson curve. As you go to higher and higher speeds the Poisson curves from adjacent surfaces on the louvers move outwards until they touch. When they touch, that's the maximum air flow speed for that gap. Typical 1/2" louvers will choke off air flow to a maximum speed around 40 mph or so; above that speed you need more and more air flow to compensate for the growing vacuum behind the windshield, but the louvers have maxed out. So the louvered vent becomes less and less effective as your speed increases to 80 mph or beyond, and the windshield becomes more noisy and has more turbulence as you pick up speed.

I get a lot of emails, "Can you make me a windshield with a reverse flip to kick the air up over my head?" Yes, I can, but I won't. Air is a spring - there are shock absorbers made with only air as the spring. When you kick a spring, it kicks back. Putting energy into the air like this is exactly the opposite of what we're all about. Windshields with reverse flips and non-fair shapes generate semi-periodic chaotic swirls of turbulent air, called Von Karman vortices, after Theodore Von Karman. These vortices, or pockets of turbulence, grow as they move away from your windshield. If you feel your head being rocked or even slammed side to side or front to back as you ride, this is Von Karman vortices at work. Some manufacturers, to my own astonishment, actually claim to produce these vortices on purpose, apparently with the idea that some turbulence is "good" and will somehow perhaps cancel out the "bad turbulence." We work very hard with the design of the shape of our windshields and the location and size of the vents to eliminate all Von Karman vortices.


Von Karman Vortices - the source of countless headaches.

Theodore Von Karman emigrated from his native Hungary to the US in 1930 to become the director of the aerodynamics laboratory at Caltech. Mark learned his aerodynamics in Von Karman labs at Caltech. Calsci windshields are designed using aerodynamic engineering principles that guarantee our shields do not generate turbulence. These are the same shapes that minimize drag and maximize fuel mileage.

The shapes of our shields are all solutions to Laplace's equation, ∇²φ = 0, which guarantees a fair shape, that is a continuous second derivative. Laplace's equation governs much of the world around us; solutions include aerodynamics, space-time near a black hole; and the electron orbitals of atoms. Notice the hydrogen orbitals below - these are some of the solutions to Laplace's equation Most of the orbitals look like spheres, doughnuts, or rain drops - the basic aerodynamic shapes.


Hydrogen Orbitals.

Design Process

All our shields are laid out on a computer and cut with an industrial cutting laser. Our shields are symmetric to within a thousandth of an inch (.025mm). All mounting holes are also drilled with the laser, guarantying an excellent fit to your bike. This precision is necessary to be certain your riding experience will be precisely the same as all our other customers, and precisely what we engineered for your bike.

Our windshields are designed by Mark Lawrence and Carl Porter. Carl has a Bachelor's degree and a Master's degree in engineering from Ohio State University. Mark has a Bachelor's degree in engineering from the California Institute of Technology, and is currently working on a PhD in physics at the University of Southern California. Carl and Mark don't agree very well about college football teams. Mark has a bit more than 550,000 miles of motorcycle experience. It takes about 6 weeks, eight to twelve prototypes, and typically several thousand miles to finalize a windshield design. Our windshields are not just a stock windshield made a bit wider and taller. We build and modify our prototypes until the resulting windshield is quiet, comfortable, and attractive.

Windshield Replacement Manufacturers:



How to choose the best windshield height for you.

The yardstick method below gives the correct answer, including adjustments for your riding posture, handlebar height, seat height, etc. The table below is only approximate. To use the table, get a size estimate from the table using your height and pants leg length. If you're between sizes, use the larger size if you live in a colder climate, or the smaller size if you live in a warmer climate. People in Florida or Houston need somewhat shorter windshields, people in Seattle or Juneau need taller windshields. Both the yardstick method and the table are for people who want to look over the windshield. If you want to look through the windshield, add about 3" to your windshield height. Of course the quietest possible ride is when you're looking through the windshield, but only about 1% of our customers are interested in looking through a windshield.

Younger guys (under 35) typically want about an inch or two shorter windshield to get a sportier feel. Older guys (over 45) typically want a more quiet and comfortable ride and prefer about an inch taller shield.

If you want coverage for your body up to your shoulders, but your head in undisturbed full-speed air, then your windshield's top edge should visually hit the ground about 10' - 12' (3 - 4 meters) in front of the front tire contact patch.

Yardstick Method of determining windshield height
  1. If your stock shield is mechanically adjustable, put it in the lowest position. If your windshield is electrically adjustable, put it about 1/4 to 1/3 of the way up.
  2. Get a yard (meter) stick - free at Home Depot or most hardware stores.
  3. Park your bike on level ground. Measure 30' (9 meters) from your front wheel contact patch. Drop something on the pavement, keys, a rock, whatever.
  4. Measure 30' (nine meters) more, you're now 60' (18 meters) in front of your bike. Drop something else, wallet, ex-girlfriend, whatever.
  5. Tape the yardstick along the center of the windshield with masking tape or something, with the 20" mark visible from the rider's seat, aligned with the top of the windshield, and the stick pointing up. Now the 21" mark is 1" above the top edge of the windshield. See picture at right.
  6. Sit on your bike and look at the two things you dropped on the pavement. Try to sit with your normal riding posture. Don't cheat - if you slouch a bit when riding, slouch a bit now.
  7. You can sight along the yard stick and see how many inches up from the top of the shield you see the 30' and 60' marks. This tells you how many inches taller you would like your windshield.
  8. Your optimum windshield height is somewhere between these two heights. Lower for warmer climates, sportier feel and more air flow. Higher for colder climates / quieter riding / more wind protection. Our shields are typically made in 1.5" (4cm) increments to help you get the best height for you.

Table: Height v. Pants Inseam (Leg Length)

28" = 71cm 29" = 74cm 30" = 76cm 31" = 79cm32" = 81cm33" = 84cm34" = 86cm35" = 89cm36" = 91cm37" = 94cm38" = 96cm
5'5" = 165cmS









5'6" = 168cm
S








5'7" = 170cmM
S







5'8" = 173cm
M
S






5'9" = 175cmL
M
S





5'10" = 178cm
L
M
S




5'11" = 180cmXL
L
M
S



6' = 183cm
XL
L
M
S


6'1" = 185cmXXL
XL
L
M
S

6'2" = 188cm
XXL
XL
L
M
S
6'3" = 191cm

XXL
XL
L
M
S
6'4" = 193cm


XXL
XL
L
M
6'5" = 196cm



XXL
XL
L
M
6'6" = 198cm




XXL
XL
L

If you buy a windshield from us, you can wrap it in plastic wrap a couple layers thick, then cut the plastic wrap away from the vent, then mount it. The plastic wrap will protect it from bugs, scratches when mounting, etc. If you might send the shield back for an exchange, please don't scratch it first. And, trust me, as impressive as your state's bugs are, I already have as many bugs as I need. Ride the windshield for 15 minutes or so. If you bought the wrong size, we'll trade you. Or, put some masking tape on your shield where you would like it cut, and we'll cut it to your spec. We want happy customers.



Instructions for adjusting handlebars and controls

Your bike was shipped from the factory with the handlebars detached, and your dealer assembled them. Not necessarily correctly. We have to check alignment on everything. This alignment will be done to fit the bike to you, not the windshield.

  1. First adjust your handlebars if necessary (this doesn't count if you have two separate handle bars bolted to the bike, these instructions are for traditional tube handlebars). Make sure the rising portion of the bars is angled back slightly relatively to the fork tubes. See pictures below.


  2. Adjust your clutch and brake levers. Loosen the screws that hold the clutch lever to the handlebars. Sit on your bike with your normal riding posture. Extend your fingers on your left hand so that they are comfortably straight out, following the line of your hand and forearm. Rotate the clutch lever about the handlebars until it is just barely touching your fingers. Now tighten it up. Same thing for the front brake lever.


  3. Adjust your mirrors. Rotate the mirrors until they are in the center of their adjustment range. Then loosen the mirror stalks, and move the mirror stalks until the mirrors are roughly in the correct position. Then tighten the mirror stalks and do the final minor adjustment on the mirrors.




Cleaning your Windshield

We make our own cleaning fluid. When you buy a windshield from us, we give you a small spray bottle of cleaning fluid and a micro-fiber cleaning towel. Here's our "secret" washing fluid recipe, the result of testing about 25 different formulas:

Makes 1 quart = 1 liter windshield washing fluid
  • 1/2 cup = 100ml ammonia (double this if you have a lot of bugs)
  • 2 cups = 400ml isopropyl (rubbing) alcohol
  • 1.5 tsp = 8ml car wash detergent (don't substitute dish soap or laundry detergent)
  • 2 cups = 500ml water

We recommend using only micro-fiber cleaning towels on your windshield.

If you don't want to play home chemist, go to WalMart and buy a gallon of Peak Windshield Cleaner (blue), about $1, and a gallon of Peak Bug Remover / RainX (green), about $1.50. Mix them 50-50 and use that on your motorcycle and in your car.



Repairing your Windshield

Scratches in our windshields can be easily repaired with any good plastic polish. McGuire's, Plexus and Novus are three good brands. You can buy a 3 bottle kit of Novus #1, #2, and #3 on Ebay for about $10. We use #1 in house to clean and polish our windshields, and #3 to repair any small scratches that happen during the manufacturing. #2 is used to remove any tiny scratches left by the #3 process.

We use a power polisher, about $10 to $20 at Walmart, HarborFreight.com, NorthernTool.com, or most auto parts stores. A few minutes with some plastic polish and one of these will restore your old windshield to nearly new.


To repair a scratch, use a good cloth - a used diaper, or the microfiber cloth we supply is good. Rub across the scratch with #3 until the scratch is visually gone. Then rub against the #3 direction with #2 to clean up the area. Finally, use #1 to polish the windshield. If you can feel the scratch with your fingernail, it's not coming all the way out, you can just improve it. If you can't feel the scratch you should be able to remove it completely.



Modifying your Windshield

You may paint your Calsci shield with pretty much anything. Paint from the rear of the shield, and preferentially use Acrylic Enamel paint. From the front of the shield it will look fantastic. Make certain the shield is very clean and very dry. Use electrical tape to mask an edge, then protect the remainder of the shield with newspaper and masking tape.

To drill a hole in your windshield, it's best to use a slower speed drill, like a battery powered drill. Also it's best to use acrylic bits, available from Craftics.com. You can do this with normal tools if you're very careful. Drill a small pilot hole in the center, 1/8" or 3/16" (3-4mm). With the full size bit, drill from the front of the shield just enough to make the full diameter hole on the front, but not all the way through. Now turn the shield over, support it on a piece of wood, and drill from the rear all the way through. Drilling from both sides like this minimizes the chances of chipping the shield as your bit completes the cut.

To cut away part of your shield, first cover most of the front of the shield with masking tape. You don't want to scratch your shield. Mark on the tape with a black felt tip pen where you want to cut.

Cut the shield with a band saw, jig saw, or dremel tool using a blade with 12 to 14 teeth per inch. Cut triangular pieces off the corners in preparation for rounding them. Or you can use the top piece you cut off to mark corner curves on your new top edge.

You can remove smaller sections of plastic using a sanding drum attachment on a dremel tool. Mark the shield first with a black felt tip pen and cut to your mark. You can draw directly on the plastic, then later wash off the ink with alcohol.

Sand new rounded corners and straighten your cut edge using a floor mounted belt sander with 80 to 100 grit sandpaper. If you don't have a floor mounted belt sander, you can get similar results by securing a hand held sander upside down in a vise and holding the windshield over that. Use a sharp piece of metal, like an open scissors, to scrape the sanded edge. This will give you the same edge as sanding with about 600 grit. Scrape with the scissors to break the sharp corners on the edge.

When making custom cuts, we use a band saw with a 12 tooth per inch non-ferrous metal cutting blade for a rough cut; a floor mounted belt sander with 80 grit sandpaper to finish the shape; a floor mounted belt sander with 100 grit sandpaper to break the corners and smooth the edge; palm sanders with 100, then 220 and then 320 grit sandpaper to prepare the edge for polishing; then we flame polish with a map torch, moving over the cleaned edge at about 4" per second (10 cm per second) with the hot part of the flame hitting the plastic.

Power tools we use

Band Saw

Jig Saw

Belt Sander

Hand Held Belt Sander

Palm Sander

MAP Torch



Fairings

For those of you who are interested in history, here's where the word "Fairing" comes from.

Early in the development of aviation, it was realized that the important thing for an airplane was to have a lot of lift and very little drag. An enormous amount of drag happens if you lose laminar flow - that is, if instead of smoothly following the surfaces on the airplane, when the air breaks away from the surface it will form spinning vortices which tumble around and wreck the airflow all over the place. This is called turbulence. The exact same problem was known from laying out the keels of ships, for water flow around a ship hull is a lot like air flow around the skin of an airplane. This problem was analyzed by mathematicians. They learned something: they could predict the points at which the air flow (or water flow) would break away from the surface and start to become turbulent.

A curve which has no breaks in it is called "Continuous" by mathematicians. A curve which has no sharp corners in it is called "smooth" by mathematicians. Smooth means the first derivative of the curve is continuous. At any given point, a curve has a radius of curvature. If there are no sudden jumps in the radius of curvature, the curve is called "Fair." A Fair curve has a continuous second derivative. It was learned that turbulent flow always starts at a point on the skin where the curve has an abrupt change in the radius of curvature, that is a point where the curve is not fair, or a point where the second derivative is discontinuous. So, you can't just stick a wing onto an airplane fuselage - the sharp corner where they meet is not even smooth, much less fair. The designers found they had to locate places like this on the aircraft skin and cover them with some smoothly curved sheet metal. These pieces of sheet metal are called "Fairings."


Notice the fairings on the wing-fuselage joint of this DC-3.
I jumped out of one of these once, and it was working just fine at the time.

In the '70's, when gas mileage became important, automotive companies quickly hired some aircraft designers to help them make their cars have less drag. Shortly after that, the automotive companies started putting pressure on the computer programmers to make certain that all the curves on an automotive body were fair. Some companies became quite obsessed with this: Honda at one point announced that they had determined that surfaces which had a continuous fifth derivative were most pleasing to the eye, so they wanted their cad/cam systems to only design curves which were smooth, fair, and also had three more levels of derivative continuity. I don't think they got very far, as very few programmers can handle the mathematics of c5 continuous surfaces.

Of course, until about 1970, there basically was no such thing as computer aided design. To lay out the curves for the hulls of ships and large bombers, Boeing many years ago built a building with an unbroken wooden floor which was bigger than a football field. They would clear this building, and draw a coordinate graph on the floor. Then, the designers would tell them exact points where they wanted the hull skin or aircraft skin to be. The engineers would hammer nails into the floor at these points. They would then take very long, very thin strips of oak, soak them in water, and tie the oak strips to the nails. The oak will naturally form a shape of least energy, which happily enough is a shape which is both smooth and fair. The engineers would wait for the oak to dry, then trace the lines on the floor of the building. This then became the master drawing for the bulkheads. The thin strips of wet oak were called "splines," which is why today curves in mcdraw and autocad are called splines, although essentially none of the programmers know this either. Most of our bombers and battleships in WW II were laid out in this building, because this was what we had.

In General Relativity, Einstein assumed that the universe itself was curved, but in a smooth and fair fashion. His reasoning: anything else would have been mathematically ugly, and he didn't believe God did ugly things. Since then, several people have made alternative theories of gravity where the universe does not have to be smooth and fair. None of them have worked worth beans, however. It seems God does in fact have a sense of aesthetics. Later, it was pointed out to Einstein that his theory included the possibility of points where the universe was neither smooth nor fair. These points are called singularities, or more popularly black holes. Not all scientists believe in black holes, and Einstein was skeptical.

Our Motorcycle Accessory Products

BMW C650GT BMW F650GS BMW F800GS BMW F800ST BMW G650GS BMW K1200GT BMW K1300GT BMW K1600GT BMW R1150GS BMW R1150R
BMW R1150RT BMW R1200GS BMW R1200R BMW R1200RT Buell Ulysses CanAm Spyder RS CanAm Spyder RT CanAm Spyder ST Ducati Diavel Ducati MTS 1200
Honda CB500 Honda CBF1000 Honda Interstate 1300 Honda NC700 Honda NT700 Honda ST1300 Honda Varadero Kawasaki Concours 1000 Kawasaki Concours 1400 Kawasaki KLR 650
Kawasaki Ninja 650R Kawasaki Ninja 1000 Kawasaki Versys Kawasaki Versys 1000 Kawasaki Z1000 KTM 950 Adventure KTM 990 Adventure KTM 990 SM-T Moto Guzzi Norge Moto Guzzi Stelvio
Suzuki VStrom 650 Suzuki VStrom 1000 Triumph Tiger 800 Triumph Tiger 1050 Triumph Tiger 1200 Triumph Trophy 1200 Yamaha FJR1300 Yamaha FZ1 Yamaha FZ6 Yamaha Ténéré 1200

Home
My Products
Search
What's New

California Scientific
4011 Seaport
West Sacramento
CA 95691
Since Jan 2, 1985
 Go Packers! 
Sales@CalSci.com
800-284-8112
916-372-6800
Revised Wednesday, 14-Aug-2013 09:38:58 PDT

Football
Investing
Neural Networks
Physics